Circulating cancer stem cells: the importance to select
Abstract
It has been demonstrated that even localized tumors without clinically apparent metastasis give rise to circulating tumor cells (CTCs). A growing number of technically diverse platforms are being developed for detecting/isolating CTCs in the circulating blood. Despite the technical challenges of isolating rare CTCs from blood, recent studies have already shown the predictive value of CTCs enumeration. Thus, it is becoming increasingly accepted that CTC numbers are linked to patients’ outcome and may also be used to monitor treatment response and disease relapse, respectively. Further CTCs provide a non-invasive source for tumor material, ‘liquid biopsy’, which is particularly important for patients, where no biopsy material can be obtained or where serial biopsies of the tumor, e.g., following treatment, are practically impossible. On the other hand the molecular and biological characterization of CTCs has still remained at a rather experimental stage. Future studies are necessary to define CTC heterogeneity to establish the crucial role of circulating cancer stem cells for driving metastasis, which represent a distinct subpopulation of CTCs that bear metastasis-initiating capabilities based on their stemness properties and invasiveness and thus are critical for the patients’ clinical outcome. As compared to non-tumorigenic/metastatic bulk CTCs, circulating cancer stem cells may not only be capable of evading from the primary tumor, but also escape from immune surveillance, survive in the circulating blood and subsequently form metastases in distant organs. Thus, circulating cancer stem cells represent a subset of exclusively tumorigenic cancer stem cells characterized by their invasive characteristics and are potential therapeutic targets for preventing disease progression. To date, only a few original reports and reviews have been published focusing on circulating cancer stem cells. This review discusses the potential importance of isolating and characterizing these circulating cancer stem cells, but also highlights current technological limitations.