Article Abstract

Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance

Authors: Tianjian Yu, Genhong Di

Abstract

Breast cancer has been shown to live in the tumor microenvironment, which consists of not only breast cancer cells themselves but also a significant amount of pathophysiologically altered surrounding stroma and cells. Diverse components of the breast cancer microenvironment, such as suppressive immune cells, re-programmed fibroblast cells, altered extracellular matrix (ECM) and certain soluble factors, synergistically impede an effective anti-tumor response and promote breast cancer progression and metastasis. Among these components, stromal cells in the breast cancer microenvironment are characterized by molecular alterations and aberrant signaling pathways, whereas the ECM features biochemical and biomechanical changes. However, triple-negative breast cancer (TNBC), the most aggressive subtype of this disease that lacks effective therapies available for other subtypes, is considered to feature a unique microenvironment distinct from that of other subtypes, especially compared to Luminal A subtype. Because these changes are now considered to significantly impact breast cancer development and progression, these unique alterations may serve as promising prognostic factors of clinical outcome or potential therapeutic targets for the treatment of TNBC. In this review, we focus on the composition of the TNBC microenvironment, concomitant distinct biological alteration, specific interplay between various cell types and TNBC cells, and the prognostic implications of these findings.

Keywords: Triple-negative breast cancer; basal-like breast cancer; tumor microenvironment; prognosis